A modified Ricatti approach to partially solvable quantum Hamiltonians. I: Finite Laurent type potentials

cnea.tipodocumentoINFORME TÉCNICO
dc.contributor.authorSalem, L. D.
dc.contributor.authorMontemayor, Rafael
dc.contributor.cneaproductorComisión Nacional de Energía Atómica; Argentina. Instituto Balseiro
dc.date.accessioned2025-09-03T15:04:37Z
dc.date.available2025-09-03T15:04:37Z
dc.date.issueds/f
dc.description.abstractPartial solubility in quantum mechanics is investigated by studying the logarithmic derivative of the wave function. By explicitly isolating the singularities of the logaritmic derivative, a modified Ricatti equation for the regular component is obtained. For the finite Laurent series potentials considered, we derive the constraints on the coupling constants to obtain closed form solutions for a subset of eigenstates.
dc.description.institutionalaffiliationFil: Salem, L. D. Comisión Nacional de Energía Atómica; Argentina
dc.description.institutionalaffiliationMontemayor, Rafael Comisión Nacional de Energía Atómica; Argentina
dc.format.extent49 p.
dc.format.extentapplication/pdf
dc.identifier.urihttps://nuclea.cnea.gob.ar/handle/20.500.12553/7212
dc.language.ISO639-3eng
dc.publisherComisión Nacional de Energía Atómica; Argentina
dc.rights.accesslevelinfo:eu-repo/semantics/openAccess
dc.rights.licenseCreative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.inisFÍSICA
dc.subject.inisMECÁNICA CUÁNTICA
dc.subject.inisSOLUBILIDAD
dc.subject.inisECUACIONES
dc.subject.inisHAMILTONIANOS
dc.subject.inisPHYSICS
dc.subject.inisQUANTUM MECHANICS
dc.subject.inisSOLUBILITY
dc.subject.inisEQUATIONS
dc.subject.inisHAMILTONIANS
dc.titleA modified Ricatti approach to partially solvable quantum Hamiltonians. I: Finite Laurent type potentials
dc.typeinfo:eu-repo/semantics/report
dc.typeinfo:ar-repo/semantics/informe técnico
dc.type.versioninfo:eu-repo/semantics/publishedVersion

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
cies_pi_Caja009_31.pdf
Tamaño:
4.94 MB
Formato:
Adobe Portable Document Format

Colecciones