The γ-dependent part of the wave functions representing γ-unstable surface vibrations
Cargando...
Archivos
Fecha
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
North Holland Publishing
Resumen
Se resuelve la ecuación para la parte dependiente de γ de las funciones de onda que representan vibraciones inestables en γ. La solución general es una combinación lineal de funciones de onda pertenecientes a un “conjunto básico”. Los coeficientes de esta combinación lineal se expresan como polinomios en cos 3γ. Se discuten algunas consecuencias de estas soluciones. En el apéndice, las ecuaciones para los coeficientes se dan en los casos I ≦ 6, y las soluciones explícitas se construyen para λ ≦ 9.
The equation for the γ-dependent part of the wave functions representing γ-unstable vibrations is solved. The general solution is a linear combination of wave functions belonging to a “basic set.“. The coefficients in this linear combination are expressed as polynomials in cos 3γ. Some consequences of these solutions are discussed. In the appendix, the equations for the coefficients are given in the cases I ≦ 6, and the explicit solutions are constructed for λ ≦ 9.
The equation for the γ-dependent part of the wave functions representing γ-unstable vibrations is solved. The general solution is a linear combination of wave functions belonging to a “basic set.“. The coefficients in this linear combination are expressed as polynomials in cos 3γ. Some consequences of these solutions are discussed. In the appendix, the equations for the coefficients are given in the cases I ≦ 6, and the explicit solutions are constructed for λ ≦ 9.