Publicación: Series Development of tlie Solution of an Eigenvalue Problem.
Cargando...
Archivos
Fecha
Tipo de recurso
ARTÍCULO CIENTÍFICO
Autores
Responsable institucional (informe)
Compilador
Diseñador
Contacto (informe)
Promotor
Productor
Titular
Inventor
Tutor de tesis
Solicitante
Afiliación
Fil: Lopez, A. Comisión Nacional de Energía Atómica; Argentina
Comisión Nacional de Energía Atómica; Argentina
Sede CNEA
Fecha de publicación
Fecha de creación
Idioma
eng
Nivel de accesibilidad
Resumen
In view of the divergencies of the field theory, the convergence of series developments of bound eigenfunctions in powers of the coupling constant is studied. Born approximation represents a suitable development in cases where an unperturbated state can be defined and in which the energy shift due to the interaction is finite. Another series development, at fixed energy, can be deviced. This latter development leads necessarily to coefficients which represent non-regular functions in configuration space, nevertheless, those series converge to a regular function if the fixed energy coincides with an eigenvalue of the considered problem or, in cases where the energy of the systems is given, furnish an eigenvalue problem for the coupling constant.