Estudio de nuevas aleaciones de Zirconio-Niobio para la construcción y reemplazo de componentes internos de reactor
Cargando...
Fecha
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Comisión Nacional de Energía Atómica. Instituto de Tecnología Nuclear Dan Beninson
Universidad Nacional de San Martín (Argentina). Instituto de Tecnología Nuclear Dan Beninson
Universidad Nacional de San Martín (Argentina). Instituto de Tecnología Nuclear Dan Beninson
Resumen
Los reactores PHWR (tipo Atucha), contienen un elevado número de componentes
internos fabricados en Zircaloy-4. Estos internos constituyen componentes únicos que no
tienen un equivalente en los reactores tipo PWR o BWR. Debido a distintos procesos de
degradación detectados durante la historia operativa, se ha postulado el potencial
reemplazo del Zircaloy’4 por otras aleaciones de zirconio. En esta tesis se presenta el
análisis realizado sobre varias de estas aleaciones, desde el punto de vista del daño por
radiación y la fragilización por hidrógeno.
Durante la primera etapa de esta tesis se analizaron los datos de bibliografía sobre las
posibles aleaciones candidatas y se realizaron cálculos de las condiciones de irradiación
tomando como caso testigo un canal combustible central. En una etapa posterior se simuló
el daño por radiación por medio de experimentos de irradiación con iones a altas fluencias; y
se estudió el efecto del agregado de hidrógeno como factor fragilizante. Los efectos
combinados de daño por radiación e hidruración se evaluaron por medio de técnicas
micromecánicas y difracción de rayos X.
También como parte de esta tesis se analizó el posible reemplazo de técnicas
mecánicas tradicionales por otras que permitan minimizar la exposición radiológica, como
los ensayos de punzonado (SPT) y los ensayos mecánicos con nanoindentación.
PHWR reactors (Atucha type) contain a significant number of internal components made of Zircaloy-4. These internal components constitute unique components with no equivalent in PWR or BWR type reactors. Due to different degradation processes detected during the operational history, the potential replacement of Zircaloy'4 by other zirconium alloys has been proposed. This thesis presents the analysis carried out on several of these alloys, focusing on radiation damage and hydrogen embrittlement. During the first part of this thesis, the literature data on the possible candidate alloys were analyzed, and calculations of the irradiation conditions were performed. A central fuel channel was taken as basis for calculation. At a later stage, radiation damage was simulated by means of ion irradiation experiments at high fluences. The effect of hydrogen embrittlement as additional degradation mechanism was studied. The combined effects of radiation damage and hydrogen embrittlement were evaluated by means of micromechanical techniques and X-ray diffraction. The potential application of micro mechanical techniques, such as small punch test (SPT) and mechanical tests with nanoindentation, was analyzed as alternatives to minimize radiological exposure.
PHWR reactors (Atucha type) contain a significant number of internal components made of Zircaloy-4. These internal components constitute unique components with no equivalent in PWR or BWR type reactors. Due to different degradation processes detected during the operational history, the potential replacement of Zircaloy'4 by other zirconium alloys has been proposed. This thesis presents the analysis carried out on several of these alloys, focusing on radiation damage and hydrogen embrittlement. During the first part of this thesis, the literature data on the possible candidate alloys were analyzed, and calculations of the irradiation conditions were performed. A central fuel channel was taken as basis for calculation. At a later stage, radiation damage was simulated by means of ion irradiation experiments at high fluences. The effect of hydrogen embrittlement as additional degradation mechanism was studied. The combined effects of radiation damage and hydrogen embrittlement were evaluated by means of micromechanical techniques and X-ray diffraction. The potential application of micro mechanical techniques, such as small punch test (SPT) and mechanical tests with nanoindentation, was analyzed as alternatives to minimize radiological exposure.