Stochastic PDEs, random fields and exact mean-values

cnea.tipodocumentoARTÍCULO CIENTÍFICO
dc.contributor.authorCaceres, Manuel Osvaldo
dc.date.accessioned2025-03-19T15:34:02Z
dc.date.available2025-03-19T15:34:02Z
dc.date.issued2020
dc.description.abstractIntroducing projector-operator technique and algebra of Terwiel's cumulants we study stochastic linear partial differential equations with global and local disorder. We present the evolution equation for the mean-value of the field as a series in terms of Terwiel's cumulant operators. Then, we prove that if we use binary disorder with time exponential-correlated structure, as source of the stochastic perturbation, this series cuts leading to a treatable evolution equation. We apply this approach to find the exact mean-value solution of electromagnetic waves with stochastic absorption of energy in conducting media. This model shows the occurrence of novel time-scale separation phenomena. Local disorder in telegrapher's equation is also presented. Thus we show that strong disorder leads to anomalous behavior at short and long time regimes. In addition, other physical systems with global disorder are worked out to find exact mean-value solutions: finite-velocity diffusion in the presence of a deterministic force (Smoluchoswki-like process generalizing, in this way, Feynman–Kac's formula for its numerical solution); Lorentz' force on a fluctuating charge model (we calculate the diffusion coefficient transverse to the applied magnetic field); and a generalized non-Maxwellian velocity distribution (Ornstein–Uhlenbeck like process showing a noise-induced transition in the stationary distribution).
dc.description.institutionalaffiliationFil.: Caceres, Manuel Osvaldo Comisión Nacional de Energía Atómica. Instituto Balseiro; Universidad Nacional de Cuyo, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
dc.format.extent1-23 p.
dc.format.extentapplication/pdf
dc.identifier.doihttps://doi.org/10.1088/1751-8121/aba655
dc.identifier.urihttps://nuclea.cnea.gob.ar/handle/20.500.12553/6178
dc.language.ISO639-3eng
dc.publisherIOP science
dc.relation.ispartofJournal of Physics A: Mathematical and Theoretical; Vol. 43 N° 40 (2020), pp. 1-22
dc.rights.accesslevelinfo:eu-repo/semantics/openAccess
dc.rights.licenseCreative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.inisPROCESOS ESTOCASTICOS
dc.subject.inisECUACIONES DIFERENCIALES PARCIALES
dc.subject.inisFUERZA DE LORENTZ
dc.subject.inisECUACIONES DIFERENCIALES
dc.subject.inisSTOCHASTIC PROCESSES
dc.subject.inisPARTIAL DIFFERENTIAL EQUATIONS
dc.subject.inisLORENTZ FORCE
dc.subject.inisDIFFERENTIAL EQUATIONS
dc.subject.keywordVELOCIDAD FINITA
dc.subject.keywordDIFUSION
dc.subject.keywordFEYNMAN-KAC
dc.subject.keywordCATTANEO-FICK
dc.subject.keywordLA FUERZA DE LORENTZ
dc.subject.keywordTRASTORNO
dc.subject.keywordMEDIOS ALEATORIOS
dc.subject.keywordFINITE-VELOCYTI
dc.subject.keywordDIFFUSION
dc.subject.keywordSMOLUCHOSWKI
dc.subject.keywordFEYNMAN-KAC
dc.subject.keywordCATTANEO-FICK
dc.subject.keywordLORENTZ FORCE
dc.subject.keywordDISORDER
dc.subject.keywordRANDOM MEDIA
dc.titleStochastic PDEs, random fields and exact mean-values
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.type.versioninfo:eu-repo/semantics/publishedVersion

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
CNEA_FIE_ART_003.pdf
Tamaño:
448.72 KB
Formato:
Adobe Portable Document Format

Colecciones