Publicación:
Single ended capacitive self-sensing system for comb drives driven XY nanopositioners

Cargando...
Miniatura

Tipo de recurso

ARTÍCULO CIENTÍFICO

Responsable institucional (informe)

Compilador

Diseñador

Contacto (informe)

Promotor

Titular

Inventor

Tutor de tesis

Solicitante

Afiliación

Fil: del Corro, P.G. Comisión Nacional de Energía Atómica. Instituto Balseiro. Laboratorio de Bajas Temperaturas; Argentina; Universidad Nacional de Cuyo; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Imboden, M. École Polytechnique Fédérale de Lausanne. Microsystems for Space Technologies Laboratory; Suiza
Fil: Pastoriza, H. Comisión Nacional de Energía Atómica. Instituto Balseiro. Laboratorio de Bajas Temperaturas; Argentina; Universidad Nacional de Cuyo; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pérez, D.J. Boston University. Division of Material Science; Estados Unidos
Fil: Bishop, D.J. Boston University. Division of Material Science; Estados Unidos; Boston University. Department of Electrical and Computer Engineering; Estados Unidos; Boston University. Department of Physics; Estados Unidos

Sede CNEA

Centro Atómico Bariloche

Fecha de publicación

Fecha de creación

Idioma

eng

Nivel de accesibilidad

Proyectos de investigación

Unidades organizativas

Número de la revista

Resumen

This paper presents the implementation of a system to capacitively self-sense the position of a comb drive based MEMS XY nanopositioner from a single common node. The nanopositioner was fabricated using the multi-users PolyMUMPs process, on which comb capacitors fringe fields are large and out of plane forces cause considerable deflection. An extensive analysis of the comb-drive capacitance including the levitation effects and its correlation to the measurements is presented. Each axis is independently measured using frequency division multiplexing (FDM) techniques. Taking advantage of the symmetry of the nanopositioner itself, the sensitivity is doubled while eliminating the intrinsic capacitance of the device. The electrical measured noise is 2.5 aF√Hz, for a sensing voltage Vsen = 3Vrms and fsen = 150 kHz, which is equivalent to 1.1 nm√Hz lateral displacement noise. This scheme can also be extended to N-degree of freedom nanopositioners.

Descripción

Palabras clave

Citación

Sensors and Actuators A: Physical. Vol. 271, no. (2018), p. 409-417

Colecciones