Publicación:
Recrystallization and martensitic transformation in nanometric grain size Cu-Al-Ni thin films grown by DC sputtering at room temperature

Cargando...
Miniatura

Tipo de recurso

ARTÍCULO CIENTÍFICO

Responsable institucional (informe)

Compilador

Diseñador

Contacto (informe)

Promotor

Titular

Inventor

Tutor de tesis

Solicitante

Afiliación

Fil: Morán; M. J. Comisión Nacional de Energía Atómica. Instituto Balseiro; Argentina; Universidad Nacional de Cuyo; Argentina
Fil: Condó; A. M. Comisión Nacional de Energía Atómica. Instituto Balseiro; Argentina; Universidad Nacional de Cuyo; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Haberkorn; N. Comisión Nacional de Energía Atómica. Instituto Balseiro; Argentina; Universidad Nacional de Cuyo; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina

Sede CNEA

Centro Atómico Bariloche

Fecha de publicación

Fecha de creación

Idioma

eng

Nivel de accesibilidad

Proyectos de investigación

Unidades organizativas

Número de la revista

Resumen

We report the recrystallization of metastable hexagonal and body centered cubic BCC phase in free-standing 6 μm thick Cu-Al-Ni films grown by DC sputtering at room temperature. The results show that the BCC phase recrystallizes to L21 at around 533 K together with precipitation of γ2-phase. Annealing temperatures (533 K–623 K) at short times (0–30 min) produce systematic increment of the fraction of γ2-phase. Films with phase coexistence of hexagonal, γ2 and L21 structure display temperature driven martensitic transformation. This transformation is observed for samples with austenite grain size of around 30 nm. In all cases, the martensitic transformation temperature (MS) notoriously decreases (compared to bulk) and systematically increases with the annealing temperatures and annealing time. In addition, the films display extended transformation and retransformation ranges along with asymmetric hysteresis, which may be associated to restitutive forces due to elastic deformations at martensite–martensite and martensite–austenite interfaces. Annealing temperatures above 623 K produce fast precipitation to equilibrium α- and γ2-phases. The austenitic phase can be recovered after annealing over 1000 K and fast quenching in ice-water.

Descripción

Palabras clave

Citación

Material Characterization. Vol. 139, no. (2018), p. 446

Colecciones