Publicación: In-beam study of 144Gd
Cargando...
Archivos
Fecha
Tipo de recurso
ARTÍCULO CIENTÍFICO
Responsable institucional (informe)
Compilador
Diseñador
Contacto (informe)
Promotor
Productor
Titular
Inventor
Tutor de tesis
Solicitante
Afiliación
Fil: Mariscotti, M. A. J. Comisión Nacional de Energía Atómica; Argentina
Beuscherc, H. Institut für Kernphysik, Kernforschungsanlage Jülich, Alemania
Davidsonc, W. F. Institut für Kernphysik, Kernforschungsanlage Jülich, Alemania
Gonoc, Y. Institut für Kernphysik, Kernforschungsanlage Jülich, Alemania
Jägerc, H. M. Institut für Kernphysik, Kernforschungsanlage Jülich, Alemania
Liederc, R. M. Institut für Kernphysik, Kernforschungsanlage Jülich, Alemania
Müller-Veggianc, M. Institut für Kernphysik, Kernforschungsanlage Jülich, Alemania
Neskakisc, A.Institut für Kernphysik, Kernforschungsanlage Jülich, Alemania
Haennic, D. R. Institut für Kernphysik, Kernforschungsanlage Jülich, Alemania
Zolnowski, D. R. Cyclotron Institute, Texas A&M University, College Station, Estados Unidos
Sede CNEA
02.78.12
Fecha de publicación
Fecha de creación
Idioma
eng
Nivel de accesibilidad
Resumen
A level scheme of 144Gd has been established using the 144Sm(α, 4nγ) reaction and in-beam spectroscopy methods. Excitation functions, γ-ray angular distributions, γ-γ coincidence spectra, γ-spectra time related to the cyclotron beam bursts and conversion coefficients for the delayed transitions have been measured.
The level scheme comprises 11 levels with spins up to I = 12. Two isomers, a 13 ± 2 ns, 7− state at 2471.4 keV and a 145 ± 30 ns, 10+ state at 3433.0 keV have been observed. The former has similar excitation energy as the 7− isomers in 142Sm, 140Nd and 138Ce and it may arise from the configuration although its lifetime seems to indicate some degree of collectivity. The 10+ state has a similar excitation energy as the 10+ isomer found in 138Ce and it may arise from the dominant configuration. Below the 10+ isomer in 144Gd only two excited states have positive parity; the hitherto known first 2+ and 4+ states. The 11+ and 12+ states must include four-particle configurations or they have to be of collective nature. The latter possibility is supported by the considerable E2/M1 mixture (≈ 20 %) observed for the 11+ to 10+ transition. An analysis of the systematics of ground band levels in the N = 80 isotones shows the same gradual behavior between the two VMI solutions previously found for the Te isotopes.