Corrosión intergranular y corrosión bajo tensiones en aceros inoxidables austeníticos
Cargando...
Archivos
Fecha
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Comisión Nacional de Energía Atómica. Instituto de Tecnología Sabato
Resumen
Los aceros inoxidables austeníticos son materiales con un amplio uso en la industria alimenticia, química, farmacéutica y nuclear, entre otras, debido a su buena
combinación de propiedades mecánicas y resistencia a la corrosión en diferentes medios. Sin embargo, pueden presentar problemas de corrosión intergranular, corrosión
bajo tensión (SCC, Stress Corrosion Cracking), picado y corrosión en rendijas.
En función de mantener su alta resistencia a la corrosión, los aceros inoxidables deben poseer un mínimo de aproximadamente 10,5 % de cromo distribuido
uniformemente. Este requisito se logra mediante tratamientos térmicos de solubilizado, realizados a temperaturas mayores que 1050 °C, seguido de enfriamiento hasta
temperatura ambiente a elevada velocidad. De esta manera, el tratamiento a alta
temperatura permite la disolución completa del cromo y carbono en la matriz austenítica, mientras que el enfriamiento evita la precipitación de carburos Cr23C6, ricos
en cromo, durante el enfriamiento. Por otro lado, es de suma importancia evitar la
exposición a temperaturas entre 500 y 950 °C, ya que puede dar lugar a la precipitación de carburos, principalmente en borde de grano y, de esta forma, empobrecer
el porcentaje de Cr cerca de dicha zona por debajo del mínimo necesario para la
formación de la capa pasivante, teniendo como resultado una menor resistencia a
la corrosión en borde de grano. Este fenómeno se conoce como sensitizado y puede presentarse, por ejemplo, en zonas afectadas por el calor de juntas soldadas o
en materiales que se encuentren en servicio a alta temperatura. La resistencia a la
corrosión bajo tensión, al picado y a la corrosión en rendijas se ve afectada por el
sensitizado, por lo cual es de suma importancia para la industria conocer el nivel
de sensitizado del acero inoxidable en las instalaciones o equipos elaborados con
este material. La detección temprana de un componente sensitizado puede prevenir
fallas, accidentes y paradas no programadas.
Existen diferentes técnicas de laboratorio para estimar el grado de sensitizado
(DOS, Degree Of Sensitization) en aceros inoxidables austeníticos. Entre ellas se
destacan las prácticas establecidas en la norma ASTM A 262 y las técnicas de
reactivación potenciocinética de lazo simple (SL-EPR) y lazo doble (DL-EPR). Las
técnicas electroquímicas permiten además cuantificar el grado de sensitizado.
El objetivo del presente trabajo es investigar la capacidad de la técnica DL-EPR
para discernir entre materiales con distintos niveles de sensitizado. Se propone evaluar probetas de acero inoxidable austenítico tipo AISI 304 tratadas térmicamente a
diferentes tiempos y temperaturas con el fin de obtener probetas solubilizadas, con
diferentes grados de sensitizado y desensitizadas (esta ´ultima una condición muy
poco estudiada).
Los resultados obtenidos mediante la técnica DL-EPR se analizaron con herramientas estadísticas y se correlacionó con la respuesta obtenida mediante ensayos en
´acido oxálico y ensayos de pérdida de peso en ´acido nítrico en ebullición, descriptos
en la norma ASTM A 262 (práctica A y C). Adicionalmente, se estableció una correlación entre el comportamiento caracterizado mediante las técnicas mencionadas
y ensayos de corrosión bajo tensión utilizando la técnica de tracción a velocidad de
deformación lenta (SSRT, Slow Strain Rate Testing) en un medio con contenido de
tiosulfato. Esto se llevó a cabo mediante la medición de pérdida de ductilidad en
comparación con los ensayos realizados en aire y mediante la observación de cambios
en la superficie de fractura luego de tracción en medio y aire.
Como resultados del trabajo se concluye que:
La técnica DL-EPR permite discernir entre aceros inoxidables austeníticos AI SI 304 con diferentes tratamientos de sensitizado, obteniéndose valores de DOS
crecientes en función del tiempo de exposición a temperatura. Sin embargo,
no fue posible diferenciar entre probetas solubilizadas y desensitizadas y entre probetas sensitizadas con un tiempo de exposición mayor a dos horas. Se
supone que la mayoría de los carburos ya habrían precipitado luego de este
tiempo.
Los resultados obtenidos mediante las prácticas estándar A y C de la ASTM A
262 se condicen con los obtenidos a partir del método DL-EPR. Por medio del
ensayo de ´acido oxálico se consiguieron estructuras acordes a las conclusiones
llegadas por las mediciones electroquímicas; a excepción de las muestras desensitizadas, donde la estructura obtenida fue una con corrosión generalizada a
partir de la cual no se podía realizar ningún análisis. Los ensayos de pérdida de
peso, por su parte, permitieron realizar un gráfico de velocidad de corrosión en
función del tiempo de tratamiento térmico, en el cual se sigue una tendencia
similar al obtenido a partir de los ensayos realizados por el método DL-EPR;
además, si bien las probetas desensitizadas se consideraron estadísticamente diferentes a las solubilizadas, se debe destacar que las mismas obtuvieron
valores de velocidad de corrosión muy próximos entre sí, y apartados de los
obtenidos para las muestras sensitizadas.
A partir de los ensayos de tracción a velocidad lenta se pudo apreciar la importante pérdida de ductilidad que tuvieron las probetas sensitizadas al comparar
los resultados obtenidos al ensayarlas en aire y en el medio con contenido de
tiosulfato; aunque en este caso no se pudo apreciar una clara tendencia de los
valores en función el tiempo de exposici´on a temperatura. Por otra parte, la
superficie de fractura de las probetas solubilizadas y desensitizadas exhibieron un comportamiento dúctil. Además, los valores obtenidos de deformación
plástica a la rotura y de reducción de ´área en las probetas desensitizadas fueron bastante cercanos a los de las probetas solubilizadas, al igual que en las
demás prácticas con sus respectivos parámetros bajo estudio.
Austenitic stainless steels are widely used in the food, chemical, pharmaceutical and nuclear industries, among others, due to their good combination of mechanical properties and resistance to corrosion in different media. However, they can present intergranular corrosion, stress corrosion cracking (SCC), pitting and crevice corro sion. In order to maintain their high corrosion resistance, stainless steels must have a minimum of approximately 10.5 % chromium, evenly distributed in the micros tructure. This requirement is achieved by solubilizing heat treatments, carried out at temperatures above 1050 °C, followed by cooling to room temperature at high rate. Thus, high temperature treatment allows complete dissolution of chromium and carbon in the austenitic matrix, while quenching prevents the precipitation of chromium-rich carbides Cr23C6 during cooling. On the other hand, it is extremely important to minimize exposure to temperatures between 500 and 950 °C, since it can lead to the precipitation of carbides, mainly at the grain boundary and, in this way, impoverish the percentage of Cr near said zone below the minimum ne cessary for the formation of the passivating layer, resulting in lower resistance to grain boundary corrosion. This phenomenon is known as sensitization and can oc cur, for example, in heat-affected zones of welded joints or in materials that are in high-temperature service. The resistance to stress corrosion cracking, pitting and crevice corrosion is affected by sensitization, which is why it is extremely important for the industry to know the degree of sensitization of stainless steel in facilities or equipment made with this material. Early detection of sensitization in a component can prevent failures, accidents, and unscheduled shutdowns. There are different laboratory techniques to estimate the degree of sensitization (DOS) in austenitic stainless steels. Among them, the practices established in the ASTM A 262 standard and the single loop (SL-EPR) and double loop (DL-EPR) electrochemical potentiokinetic reactivation techniques stand out. Electrochemical techniques also allow quantifying the degree of sensitization. The objective of this work is to investigate the ability of the DL-EPR technique to discern between materials with different degrees of sensitization. It is proposed to evaluate AISI 304 type austenitic stainless steel specimens heat-treated at diffe rent times and temperatures in order to obtain solubilized specimens, with different degrees of sensitization and desensitization (the latter a condition that has been seldom studied). The results obtained through the DL-EPR technique were analyzed with statis tical tools and correlated with the response obtained through oxalic acid tests and weight loss tests in boiling nitric acid, described in ASTM A 262 (practice A and C). Additionally, a correlation was established between the behavior characterized by the aforementioned techniques and stress corrosion cracking tests using the slow strain rate testing (SSRT) in a thiosulfate solution. This was carried out by mea suring the loss of ductility in comparison with the tests carried out in air and by observing changes in the fracture surface after SSRT in solution vs. air tests. As results of this work it is concluded that: The DL-EPR technique allows distinguishing between AISI 304 austenitic stainless steels with different sensitization treatments, obtaining increasing DOS values as a function of temperature exposure time. However, it was not possible to differentiate between solubilized and desensitized test specimens and between sensitized test specimens with an exposure time greater than two hours. It is assumed that most of the carbides would have already precipitated after this time. The results obtained through standard practices A and C of ASTM A 262 are consistent with those obtained from the DL-EPR method. Etch structures obtained with the oxalic acid test were in accord to the conclusions reached by the electrochemical measurements; with the exception of the desensitized samples, where the structure obtained was one with generalized corrosion from which no analysis could be performed. For the weight loss tests, a graph of the corrosion rate as a function of the heat treatment time followed a trend similar to that obtained from the tests carried out by the DL-EPR method. In addition, although the desensitized specimens were considered statistically different from the solubilized ones, it should be noted that they obtained co rrosion rate values very close to each other, and far from those obtained for the sensitized samples. From the tensile tests at slow rate it was possible to appreciate the important loss of ductility that the sensitized specimens had when comparing the results obtained when testing them in air and in the thiosulfate solution; although in this case it was not possible to appreciate a clear trend of the values depending on the time of exposure to temperature. On the other hand, the fracture surface of the solubilized and desensitized specimens exhibited a ductile behavior. In addition, the values obtained for plastic deformation and area reduction in the desensitized specimens were quite close to those of the solubilized specimens, as in the other practices with their respective parameters under study.
Austenitic stainless steels are widely used in the food, chemical, pharmaceutical and nuclear industries, among others, due to their good combination of mechanical properties and resistance to corrosion in different media. However, they can present intergranular corrosion, stress corrosion cracking (SCC), pitting and crevice corro sion. In order to maintain their high corrosion resistance, stainless steels must have a minimum of approximately 10.5 % chromium, evenly distributed in the micros tructure. This requirement is achieved by solubilizing heat treatments, carried out at temperatures above 1050 °C, followed by cooling to room temperature at high rate. Thus, high temperature treatment allows complete dissolution of chromium and carbon in the austenitic matrix, while quenching prevents the precipitation of chromium-rich carbides Cr23C6 during cooling. On the other hand, it is extremely important to minimize exposure to temperatures between 500 and 950 °C, since it can lead to the precipitation of carbides, mainly at the grain boundary and, in this way, impoverish the percentage of Cr near said zone below the minimum ne cessary for the formation of the passivating layer, resulting in lower resistance to grain boundary corrosion. This phenomenon is known as sensitization and can oc cur, for example, in heat-affected zones of welded joints or in materials that are in high-temperature service. The resistance to stress corrosion cracking, pitting and crevice corrosion is affected by sensitization, which is why it is extremely important for the industry to know the degree of sensitization of stainless steel in facilities or equipment made with this material. Early detection of sensitization in a component can prevent failures, accidents, and unscheduled shutdowns. There are different laboratory techniques to estimate the degree of sensitization (DOS) in austenitic stainless steels. Among them, the practices established in the ASTM A 262 standard and the single loop (SL-EPR) and double loop (DL-EPR) electrochemical potentiokinetic reactivation techniques stand out. Electrochemical techniques also allow quantifying the degree of sensitization. The objective of this work is to investigate the ability of the DL-EPR technique to discern between materials with different degrees of sensitization. It is proposed to evaluate AISI 304 type austenitic stainless steel specimens heat-treated at diffe rent times and temperatures in order to obtain solubilized specimens, with different degrees of sensitization and desensitization (the latter a condition that has been seldom studied). The results obtained through the DL-EPR technique were analyzed with statis tical tools and correlated with the response obtained through oxalic acid tests and weight loss tests in boiling nitric acid, described in ASTM A 262 (practice A and C). Additionally, a correlation was established between the behavior characterized by the aforementioned techniques and stress corrosion cracking tests using the slow strain rate testing (SSRT) in a thiosulfate solution. This was carried out by mea suring the loss of ductility in comparison with the tests carried out in air and by observing changes in the fracture surface after SSRT in solution vs. air tests. As results of this work it is concluded that: The DL-EPR technique allows distinguishing between AISI 304 austenitic stainless steels with different sensitization treatments, obtaining increasing DOS values as a function of temperature exposure time. However, it was not possible to differentiate between solubilized and desensitized test specimens and between sensitized test specimens with an exposure time greater than two hours. It is assumed that most of the carbides would have already precipitated after this time. The results obtained through standard practices A and C of ASTM A 262 are consistent with those obtained from the DL-EPR method. Etch structures obtained with the oxalic acid test were in accord to the conclusions reached by the electrochemical measurements; with the exception of the desensitized samples, where the structure obtained was one with generalized corrosion from which no analysis could be performed. For the weight loss tests, a graph of the corrosion rate as a function of the heat treatment time followed a trend similar to that obtained from the tests carried out by the DL-EPR method. In addition, although the desensitized specimens were considered statistically different from the solubilized ones, it should be noted that they obtained co rrosion rate values very close to each other, and far from those obtained for the sensitized samples. From the tensile tests at slow rate it was possible to appreciate the important loss of ductility that the sensitized specimens had when comparing the results obtained when testing them in air and in the thiosulfate solution; although in this case it was not possible to appreciate a clear trend of the values depending on the time of exposure to temperature. On the other hand, the fracture surface of the solubilized and desensitized specimens exhibited a ductile behavior. In addition, the values obtained for plastic deformation and area reduction in the desensitized specimens were quite close to those of the solubilized specimens, as in the other practices with their respective parameters under study.