Diseño de sensores de velocidad de partículas para posibles usos en geofísica y/o ensayos no destructivos en materiales.
Cargando...
Archivos
Fecha
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Comisión Nacional de Energía Atómica. Instituto de Tecnología Sabato
Resumen
En el presente trabajo de tesis se llevó a cabo el diseño y desarrollo de sensores térmicos de velocidad de partículas acústicas para su potencial aplicación en geofísica, acústica, y ensayos no destructivos de materiales. Se elaboraron modelos numéricos por el método de elementos finitos (FEM) de dispositivos conformados por filamentos metálicos suspendidos de dimensiones micrométricas. Cuando estos se calientan y una onda acústica los atraviesa se genera un diferencial de temperatura que se traduce en un diferencial de resistencia eléctrica, proporcional a la velocidad del flujo de aire. Se definieron y optimizaron los parámetros geométricos de dos modelos de sensores en base a la literatura previa y el modelo numérico desarrollado. Se estudiaron las respuestas estacionarias y temporales tanto para flujos de aire continuos (DC) como alternos (onda acústica), en función de la frecuencia. Una vez definido el prototipo que maximiza la sensibilidad se procedió a su construcción con técnicas de microfabricación en sala limpia. Se utilizó fotolitografía para transferir el patrón de los sensores sobre obleas de Si <100> con una capa de SiO2 crecido térmicamente. Se depositó una capa de 100-200 nm de metal por técnicas de evaporación térmica y luego se removió el excedente por lift-off para conformar los filamentos metálicos. La liberación de estos para que queden suspendidos se realizó mediante la técnica de ataque en seco (dry etching), Reactive Ion Etching (RIE), aplicada en dos pasos. Se caracterizaron los dispositivos obtenidos a través de Microscopía Electrónica de Barrido y perfilometría de contacto. La resistencia eléctrica de los filamentos fue medida por ley de Ohm en una Probe Station realizando curvas tensión (V) vs corriente (I) a cuatro puntas. Los parámetros geométricos de los dispositivos dieron de acuerdo a lo esperado, sin embargo, la resistencia eléctrica medida resultó en dos órdenes de magnitud mayor a lo simulado.
The present thesis work presents the design and construction of a thermal sensor for measurements of acoustic particle velocity with potential applications in geophysics, acoustics and non-destructive tests on materials. Numerical models consisting of suspended micro filaments were developed using the finite element method (FEM). When these are heated and acoustic wave propagates through them a temperature differential is generated changing the differential resistance of the filaments and thus proportional to the velocity of the flux. The geometrical parameters of two designs were optimized based on previous literature and the model developed. The stationary and dynamic response were studied as function of the frequency. Once the prototype that maximize the sensibility was defined a physical prototype was built applying micro fabrication techniques in clean room. The pattern of the devices was transferred with photolithography over a 4’’ Si <100> wafer with a film of thermal oxide SiO2. A thin metallic film of 100-200 nm was deposited by thermal evaporation and then the excess removed with lift-off to perform the filaments. The release of these was done applying a dry etching method called Reactive Ion Etching (RIE) in two steps. The obtained devices were characterized using a Scanning Electron Microscope (SEM) and a contact perfilometer. The electric resistance of the filaments was measured in a Probe Station performing V vs I curves, and Ohm’s law. The geometric parameters of the device resulted as expected despite the measured electric resistance was two orders of magnitude greater than simulations.
The present thesis work presents the design and construction of a thermal sensor for measurements of acoustic particle velocity with potential applications in geophysics, acoustics and non-destructive tests on materials. Numerical models consisting of suspended micro filaments were developed using the finite element method (FEM). When these are heated and acoustic wave propagates through them a temperature differential is generated changing the differential resistance of the filaments and thus proportional to the velocity of the flux. The geometrical parameters of two designs were optimized based on previous literature and the model developed. The stationary and dynamic response were studied as function of the frequency. Once the prototype that maximize the sensibility was defined a physical prototype was built applying micro fabrication techniques in clean room. The pattern of the devices was transferred with photolithography over a 4’’ Si <100> wafer with a film of thermal oxide SiO2. A thin metallic film of 100-200 nm was deposited by thermal evaporation and then the excess removed with lift-off to perform the filaments. The release of these was done applying a dry etching method called Reactive Ion Etching (RIE) in two steps. The obtained devices were characterized using a Scanning Electron Microscope (SEM) and a contact perfilometer. The electric resistance of the filaments was measured in a Probe Station performing V vs I curves, and Ohm’s law. The geometric parameters of the device resulted as expected despite the measured electric resistance was two orders of magnitude greater than simulations.