Publicación: Determinación de la composición química de rayos cósmicos ultra-energéticos a partir de las mediciones de subdetectores de superficie múltiples
Determination of ultra-high energy cosmic ray composition from measurements of multiple surface subdetectors
Cargando...
Archivos
Fecha
Tipo de recurso
TESIS DOCTORAL
Autores
Responsable institucional (informe)
Compilador
Diseñador
Contacto (informe)
Promotor
Productor
Titular
Inventor
Tutor de tesis
Solicitante
Afiliación
Fil: Schmidt, David. Comisión Nacional de Energía Atómica; Argentina
Sede CNEA
Fecha de publicación
Fecha de creación
Idioma
eng
Nivel de accesibilidad
Resumen
Un cierto número de enigmas aún perduran respecto a los rayos cósmicos de muy alta energía medidos en la Tierra. En primer lugar, el misterio acerca de las fuentes que los
causan, debido a intentos frustrados de rastrear estas partículas hacia su origen por culpa de las desviaciones en campos magnéticos galácticos y extra-galácticos. Además, sigue sin ser claro el rango de energías donde inicia la contribución extra-galáctica, y cada hipótesis planteada es acompañada por un cierto número de complicaciones adicionales a resolver. La supresión del flujo en las energías más altas, alguna vez explicada por la producción fotón-pión por interacción con la radiación del fondo de microondas, ha sido puesta bajo escrutinio por mediciones de composición progresivamente más pesada arriba del codo, una región que se pensó dominada por protones desde hace poco más que una década atrás. Relacionado con esto, tampoco son claros aún los roles relativos de la foto-desintegración y la rigidez máxima alcanzable por fuentes extragalácticas cercanas en la definición de las características del espectro de energía. También sigue sin ser explicado el déficit en el número de muones predichos por simulaciones de lluvias atmosféricas extendidas usando modelos de interacción hadrónicos ajustados por el LHC. Por todo esto, conocer la dependencia con la energía de las abundancias de elementos de rayos cósmicos sería muy beneficiosa para responder cada una de estas incógnitas y muchas otras. El Observatorio Pierre Auger es el experimento más grande de los dos que actualmente miden rayos cósmicos ultra-energéticos y pretende abordar los temas anteriores aún no respondidos. En esta búsqueda, se está implementando una actualización y mejora de detectores, llamada AugerPrime, para poder reconstruir la masa de los rayos cósmicos evento por evento, por medio de la medición de la magnitud correlacionada a la componente muónica de la lluvia de partículas atmosférica extendida. La colocación de centelladores encima de los detectores Cherenkov es la característica distintiva de la actualización, cuyo concepto es el aprovechamiento de la discrepancia de señales medidas entre estos dos sub-detectores res-
pecto a la componente muónica y electromagnética de las lluvias. El trabajo que se describe en esta tesis incluye (i) el análisis del diseño del centellador de superficie, (ii) las mejoras hechas al software de análisis de datos del Observatorio para poder incluir estos detectores, (iii) el desarrollo y ajuste de la simulación completa de los centelladores, (iv) la evaluación de un algoritmo basado en una matriz para la reconstrucción de la masa del rayo cósmico a partir de las mediciones de los dos sub-detectores de superficie, y (v) la aplicación de este algoritmo para seleccionar protones del fondo, para dos escenarios astrofísicos diferentes, con propósito de realizar astronomía de partículas cargadas. Las herramientas y métodos desarrollados en este trabajo son fundamentales para futuros análisis en el contexto de AugerPrime.
A number of conundrums endure regarding the very highest energy cosmic rays measured at Earth. For one, their sources remain shrouded in mystery with attempts at back-tracing these particles to their origins confounded by deflections in galactic and extra-galactic magnetic fields. The region in energy for the emergence of the extra-galactic contribution remains unclear, and each hypothesis is accompanied by an additional set of complications to address. The suppression of the flux at the highest energies, once explainable by photo-pion production through interactions with the cosmic microwave background, has been placed under scrutiny by measurements of an increasingly heavier composition above the ankle, a region which was thought to be dominated by protons just a little over a decade ago. Relatedly, the relative roles of photo-disintegration and the maximum rigidity achievable by nearby extragalactic sources in defining features of the energy spectrum are unclear. A deficit in the number of muons predicted by simulations of extensive air showers using the LHC-tuned hadronic interaction models also remains unexplained. Knowledge of the energy dependency of the elemental abundances of cosmic rays would be highly beneficial in answering each of these questions and numerous others. The Pierre Auger Observatory is the largest of the two experiments currently measuring ultra-high-energy cosmic rays and aims to address the aforementioned outstanding issues in the field. In this pursuit, it is performing a large-scale detector upgrade, known as Auger-Prime, in order to reconstruct the mass of cosmic rays on a per event basis by means of measuring the correlated magnitude of the muonic component of extensive air showers. The placement of a scintillator atop each water-Cherenkov detector is the highlight feature of the detector upgrade with the principle concept being the exploitation of the differing responses of the two sub-detectors to the electromagnetic and muonic shower components. The work described in this dissertation includes (i) analyses used to inform the design of the scintillator, (ii) the upgrades to the observatory’s software framework in order to accommodate the detector upgrade, (iii) the development and tuning of comprehensive scintillator surface detector simulations, (iv) the assessment of a matrix-based algorithm used to reconstruct the mass of cosmic rays from measurements of the two surface sub-detectors, and (v) an application of this algorithm in selecting protons from the background of two different astrophysical scenarios for the purpose of performing charged particle astronomy. The tools and methods developed in this work are of pivotal importance for future analyses in the context of AugerPrime.
A number of conundrums endure regarding the very highest energy cosmic rays measured at Earth. For one, their sources remain shrouded in mystery with attempts at back-tracing these particles to their origins confounded by deflections in galactic and extra-galactic magnetic fields. The region in energy for the emergence of the extra-galactic contribution remains unclear, and each hypothesis is accompanied by an additional set of complications to address. The suppression of the flux at the highest energies, once explainable by photo-pion production through interactions with the cosmic microwave background, has been placed under scrutiny by measurements of an increasingly heavier composition above the ankle, a region which was thought to be dominated by protons just a little over a decade ago. Relatedly, the relative roles of photo-disintegration and the maximum rigidity achievable by nearby extragalactic sources in defining features of the energy spectrum are unclear. A deficit in the number of muons predicted by simulations of extensive air showers using the LHC-tuned hadronic interaction models also remains unexplained. Knowledge of the energy dependency of the elemental abundances of cosmic rays would be highly beneficial in answering each of these questions and numerous others. The Pierre Auger Observatory is the largest of the two experiments currently measuring ultra-high-energy cosmic rays and aims to address the aforementioned outstanding issues in the field. In this pursuit, it is performing a large-scale detector upgrade, known as Auger-Prime, in order to reconstruct the mass of cosmic rays on a per event basis by means of measuring the correlated magnitude of the muonic component of extensive air showers. The placement of a scintillator atop each water-Cherenkov detector is the highlight feature of the detector upgrade with the principle concept being the exploitation of the differing responses of the two sub-detectors to the electromagnetic and muonic shower components. The work described in this dissertation includes (i) analyses used to inform the design of the scintillator, (ii) the upgrades to the observatory’s software framework in order to accommodate the detector upgrade, (iii) the development and tuning of comprehensive scintillator surface detector simulations, (iv) the assessment of a matrix-based algorithm used to reconstruct the mass of cosmic rays from measurements of the two surface sub-detectors, and (v) an application of this algorithm in selecting protons from the background of two different astrophysical scenarios for the purpose of performing charged particle astronomy. The tools and methods developed in this work are of pivotal importance for future analyses in the context of AugerPrime.