Publicación: Single ended capacitive self-sensing system for comb drives driven XY nanopositioners
Cargando...
Archivos
Fecha
Tipo de recurso
ARTÍCULO CIENTÍFICO
Responsable institucional (informe)
Compilador
Diseñador
Contacto (informe)
Promotor
Titular
Inventor
Tutor de tesis
Solicitante
Afiliación
Fil: del Corro, P.G. Comisión Nacional de Energía Atómica. Instituto Balseiro. Laboratorio de Bajas Temperaturas; Argentina; Universidad Nacional de Cuyo; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Imboden, M. École Polytechnique Fédérale de Lausanne. Microsystems for Space Technologies Laboratory; Suiza
Fil: Pastoriza, H. Comisión Nacional de Energía Atómica. Instituto Balseiro. Laboratorio de Bajas Temperaturas; Argentina; Universidad Nacional de Cuyo; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pérez, D.J. Boston University. Division of Material Science; Estados Unidos
Fil: Bishop, D.J. Boston University. Division of Material Science; Estados Unidos; Boston University. Department of Electrical and Computer Engineering; Estados Unidos; Boston University. Department of Physics; Estados Unidos
Sede CNEA
Centro Atómico Bariloche
Fecha de publicación
Fecha de creación
Idioma
eng
Nivel de accesibilidad
Resumen
This paper presents the implementation of a system to capacitively self-sense the position of a comb drive based MEMS XY nanopositioner from a single common node. The nanopositioner was fabricated using the multi-users PolyMUMPs process, on which comb capacitors fringe fields are large and out of plane forces cause considerable deflection. An extensive analysis of the comb-drive capacitance including the levitation effects and its correlation to the measurements is presented. Each axis is independently measured using frequency division multiplexing (FDM) techniques. Taking advantage of the symmetry of the nanopositioner itself, the sensitivity is doubled while eliminating the intrinsic capacitance of the device. The electrical measured noise is 2.5 aF√Hz, for a sensing voltage Vsen = 3Vrms and fsen = 150 kHz, which is equivalent to 1.1 nm√Hz lateral displacement noise. This scheme can also be extended to N-degree of freedom nanopositioners.
Descripción
Palabras clave
Citación
Sensors and Actuators A: Physical. Vol. 271, no. (2018), p. 409-417