Evaluación del efecto del níquel en la resistencia a la corrosión bajo tensión en medios agrios de aceros de bala aleación
Evaluation of the effect of nickel on the stress corrosion resistance in sour media of alloy bullet steels
Cargando...
Fecha
Tipo de recurso
TESIS DE DOCTORADO
Autor / Creador principal
Responsable institucional (informe)
Compilador
Diseñador
Contacto (informe)
Promotor
Titular
Inventor
Tutor de tesis
Solicitante
Afiliación
Fil: Chalfoun, Danissa Romina. Comisión Nacional de Energía Atómica. Instituto Sabato; Argentina.
Sede CNEA
Centro Atómico Constituyentes
Fecha de publicación
Fecha de creación
2022
Idioma
spa
Nivel de accesibilidad
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/4.0/
Versión
info:eu-repo/semantics/publishedVersion
Identificador CNEA
ITS/TD 167/22
TD-ITS_EA-2022chalfoun
TD-ITS_EA-2022chalfoun
Identificador (documentos oficiales)
ISBN
ISSN
Cobertura espacial
Cobertura temporal
Materia INIS
ACEROS DE BAJA ALEACION
HIDROGENO
NIQUEL
MATERIALES
ALEACIONES
PERMEABILIDAD
TENSIONES TERMICAS
DEFORMACIONES
PROPIEDADES MECANICAS
ELONGACION
LOW A|LLOY STEELS
HYDROGEN
NICKEL
MATERIALS
ALLOYS
PERMEABILITY
THERMAL STRESSES
STRAINS
MECHANICAL PROPERTIES
ELONGATION
|
HIDROGENO
NIQUEL
MATERIALES
ALEACIONES
PERMEABILIDAD
TENSIONES TERMICAS
DEFORMACIONES
PROPIEDADES MECANICAS
ELONGACION
LOW A|LLOY STEELS
HYDROGEN
NICKEL
MATERIALS
ALLOYS
PERMEABILITY
THERMAL STRESSES
STRAINS
MECHANICAL PROPERTIES
ELONGATION
|
Palabras clave
ACEROS DE BAJA ALEACION
NIQUEL
FRAGILIZACION POR HIDROGENO
CORROSION
PERMEACION DE HIDROGENO
TIOSULFATO
SULFIDE STRESS CRACKING
LOW ALLOY STEELS
NICKEL
HYDROGEN EMBRITTLEMENT
CORROSION
HYDROGEN PERMEATION
THIOSULFATE
NIQUEL
FRAGILIZACION POR HIDROGENO
CORROSION
PERMEACION DE HIDROGENO
TIOSULFATO
SULFIDE STRESS CRACKING
LOW ALLOY STEELS
NICKEL
HYDROGEN EMBRITTLEMENT
CORROSION
HYDROGEN PERMEATION
THIOSULFATE
Macro-area temática
Formato (extensión)
352 p.
Editor
Comisión Nacional de Energía Atómica. Gerencia Área Académica. Gerencia Instituto Sabato
Universidad Nacional San Martin. Instituto de tecnología Sabato
Universidad Nacional San Martin. Instituto de tecnología Sabato
Es parte de
Es parte la serie
Agrupamiento documental - Sección
Agrupamiento documental - Serie
Evaluación académica
Institución académica
Universidad Nacional San Martin. Instituto de Tecnología Sabato
Titulación
Doctor en Ciencia y Tecnología mención Materiales
Fecha de resolución
Fecha de presentación de solicitud
Resolución
Estado
Prioridad - fecha
Estado de licenciamiento
Nº de prioridad
Nº de patente
Nº de solicitud
País de registro
Nivel de madurez de la tecnología
Campo de aplicación
Campo de desarrollo
Resumen
El contenido de níquel en los aceros de baja aleación (Low Alloy Steels, LASs) está limitado a un valor máximo de 1% p/p Ni desde 1975 de acuerdo a la norma NACE MR0175/ISO 15156 para su utilización en la industria de producción de gas y petróleo (Oil & Gas, O&G). Esta restricción se impone con el fin de evitar la corrosión (o fisuración) bajo tensión en medios agrios, o con H2S, (Sulfide Stress Cracking, SSC) en LASs. El SSC se acepta como un caso particular de fragilización por hidrógeno y representa una de las principales amenazas a la integridad de componentes de industrias del O&G. La ocurrencia de este fenómeno depende de la severidad del medio, del estado de tensiones y de la microestructura del componente, en especial, de la presencia de fases duras y frágiles. Más allá de la restricción mencionada, basada en ensayos realizados entre 1960 y 1970, el Ni aumenta la tenacidad y la resistencia mecánica e incluso disminuye la temperatura de transición dúctil frágil de los LASs sin penalizar su soldabilidad. Estas características lo transforman en un elemento aleante deseado en vistas de las condiciones cada vez más extremas (presiones mayores a 103 MPa y temperaturas entre –60 y 177oC) que implican la exploración y producción de O&G. Sin embargo, el Ni disminuye la temperatura crítica Ac1 al ser un estabilizador del campo austenítico por lo que la presencia de martensita sin revenir en la microestructura final puede resultar inadvertida en caso de revenidos a altas temperaturas para reducir la dureza final por debajo de 22 HRC, según la norma. El objetivo de esta tesis es la evaluación el efecto del Ni, independientemente del de otros aleantes, en la SSC abordando por separado la influencia de dicho elemento en la cinética de reacción anódica y catódica como así también su rol en la difusión y atrapamiento de hidrógeno, en presencia y ausencia de cargas mecánicas aplicadas. Se utilizaron aceros de laboratorio en los que únicamente se varió el contenido de Ni entre 0 y 5%, templados y revenidos teniendo en cuenta la influencia del %Ni en Ac1. Se obtuvo una microestructura final cercana a 100% de martensita revenida con propiedades mecánicas similares entre sí. Se concluyó que en el medio agrio simulado utilizado y al potencial de circuito abierto, el níquel promueve la formación de una capa de sulfuros de hierro y de níquel responsable de reducir la cinética anódica. En presencia de cargas mecánicas aplicadas el níquel favorece la formación de trincheras superficiales, una forma particular de picaduras profundas, asistidas por disolución anódica y deformación plástica, en cuya punta pueden nuclear y propagar fisuras asistidas por hidrógeno absorbido en el acero ayudado por el H2S, que inhibe la recombinación a H2. Se determinó que la tensión umbral a partir de la cual se forman dichas trincheras depende del %Ni y se encuentra por debajo de la tensión de fluencia. Respecto a su interacción con el hidrógeno, se observó que el níquel retarda la difusión de hidrógeno sin repercutir sustancialmente sobre su solubilidad y que no promueve el atrapamiento irreversible en los aceros estudiados.
The nickel content in low alloy steels (Low Alloy Steels, LASs) is limited to a maximum value of 1% w/w Ni since 1975 according to the NACE MR0175/ISO 15156 standard for use in the production industry. gas and oil (Oil & Gas, O&G). This restriction is imposed in order to avoid corrosion (or cracking) under stress in sour media, or with H2S, (Sulfide Stress Cracking, SSC) in LASs. SSC is accepted as a particular case of hydrogen embrittlement and represents one of the main threats to the integrity of components in O&G industries. The occurrence of this phenomenon depends on the severity of the environment, the state of stress and the microstructure of the component, especially, the presence of hard and brittle phases. Beyond the aforementioned restriction, based on tests carried out between 1960 and 1970, Ni increases toughness and mechanical resistance and even decreases the brittle ductile transition temperature of LASs without penalizing their weldability. These characteristics make it a desired alloying element in view of the increasingly extreme conditions (pressures greater than 103 MPa and temperatures between –60 and 177oC) that involve O&G exploration and production. However, Ni decreases the critical temperature Ac1 as it is a stabilizer of the austenitic field, so the presence of untempered martensite in the final microstructure may be unnoticed in the case of tempering at high temperatures to reduce the final hardness below 22 HRC. , according to the standard. The objective of this thesis is to evaluate the effect of Ni, independently of other alloys, on the SSC, separately addressing the influence of said element on the anodic and cathodic reaction kinetics as well as its role in the diffusion and trapping of hydrogen. , in the presence and absence of applied mechanical loads. Laboratory steels were used in which only the Ni content was varied between 0 and 5%, quenched and tempered taking into account the influence of %Ni in Ac1. A final microstructure close to 100% tempered martensite was obtained with mechanical properties similar to each other. It was concluded that in the simulated sour medium used and at the open circuit potential, nickel promotes the formation of a layer of iron and nickel sulfides responsible for reducing anodic kinetics. In the presence of applied mechanical loads, nickel favors the formation of superficial trenches, a particular form of deep pits, assisted by anodic dissolution and plastic deformation, at the tip of which they can nucleate and propagate cracks assisted by hydrogen absorbed in the steel helped by H2S, which inhibits recombination to H2. It was determined that the threshold stress from which these trenches are formed depends on the %Ni and is below the yield stress. Regarding its interaction with hydrogen, it was observed that nickel retards the diffusion of hydrogen without substantially affecting its solubility and that it does not promote irreversible trapping in the steels studied.
The nickel content in low alloy steels (Low Alloy Steels, LASs) is limited to a maximum value of 1% w/w Ni since 1975 according to the NACE MR0175/ISO 15156 standard for use in the production industry. gas and oil (Oil & Gas, O&G). This restriction is imposed in order to avoid corrosion (or cracking) under stress in sour media, or with H2S, (Sulfide Stress Cracking, SSC) in LASs. SSC is accepted as a particular case of hydrogen embrittlement and represents one of the main threats to the integrity of components in O&G industries. The occurrence of this phenomenon depends on the severity of the environment, the state of stress and the microstructure of the component, especially, the presence of hard and brittle phases. Beyond the aforementioned restriction, based on tests carried out between 1960 and 1970, Ni increases toughness and mechanical resistance and even decreases the brittle ductile transition temperature of LASs without penalizing their weldability. These characteristics make it a desired alloying element in view of the increasingly extreme conditions (pressures greater than 103 MPa and temperatures between –60 and 177oC) that involve O&G exploration and production. However, Ni decreases the critical temperature Ac1 as it is a stabilizer of the austenitic field, so the presence of untempered martensite in the final microstructure may be unnoticed in the case of tempering at high temperatures to reduce the final hardness below 22 HRC. , according to the standard. The objective of this thesis is to evaluate the effect of Ni, independently of other alloys, on the SSC, separately addressing the influence of said element on the anodic and cathodic reaction kinetics as well as its role in the diffusion and trapping of hydrogen. , in the presence and absence of applied mechanical loads. Laboratory steels were used in which only the Ni content was varied between 0 and 5%, quenched and tempered taking into account the influence of %Ni in Ac1. A final microstructure close to 100% tempered martensite was obtained with mechanical properties similar to each other. It was concluded that in the simulated sour medium used and at the open circuit potential, nickel promotes the formation of a layer of iron and nickel sulfides responsible for reducing anodic kinetics. In the presence of applied mechanical loads, nickel favors the formation of superficial trenches, a particular form of deep pits, assisted by anodic dissolution and plastic deformation, at the tip of which they can nucleate and propagate cracks assisted by hydrogen absorbed in the steel helped by H2S, which inhibits recombination to H2. It was determined that the threshold stress from which these trenches are formed depends on the %Ni and is below the yield stress. Regarding its interaction with hydrogen, it was observed that nickel retards the diffusion of hydrogen without substantially affecting its solubility and that it does not promote irreversible trapping in the steels studied.