Microstructure of as-cast single and twin roller melt-spun Ni2MnGa ribbons

cnea.localizacionCentro Atómico Bariloche
cnea.tipodocumentoARTÍCULO CIENTÍFICO
dc.contributor.authorPozo-López, G.
dc.contributor.authorCondó, A.M.
dc.contributor.authorFabietti, L.M.
dc.contributor.authorWinkler, E.
dc.contributor.authorHaberkorn, N.
dc.contributor.authorUrreta, S.E.
dc.contributor.cneaproductorGerencia Física. Departamento Materia Condensada. División Bajas Temperaturas
dc.date.accessioned2024-05-07T13:37:07Z
dc.date.available2024-05-07T13:37:07Z
dc.date.issued2017-02-00
dc.description.abstractStoichiometric Ni2MnGa alloys are processed by two rapid solidification techniques – single-roller (SR) and twin-roller (TR) melt spinning – and the resulting microstructures and magnetic properties determined. Samples processed at tangential wheel speeds of 10 m/s (V10) and 15 m/s (V15) are studied in the as-cast condition to analyze the influence of the production methods on the microstructure. Important aspects like the resulting phases, their crystallographic texture, magnetic properties, martensitic transformation temperatures and Curie temperatures are compared. In addition, the magnetization mechanism involving twin boundary motion is explored. Our results indicate that the TR method provides lower cooling rates, thicker samples, higher internal stresses and larger MnS precipitates. However, the quenching rate is mainly determined by the tangential wheel velocity. TR samples also exhibit [100] texture normal to the ribbon plane but in a lesser extent than SR ribbons. Martensitic transformation temperatures are higher in samples V15 (~ 150 K) than in V10 (~ 100 K), with no clear difference between the SR and TR modes. This behavior is explained by considering distinct degrees of disorder in the L21 austenite phase resulting from quenching. The hysteresis of the transformation, defined as the difference Af − MS, takes similar values in the four samples analyzed. Pre-martensitic transformation temperatures are also slightly higher in samples V15, (230 ± 3) K, than in samples V10, (222 ± 3) K, as the magnitude of the Hopkinson effect, in good agreement with a higher residual stress level in TR ribbons. In the martensitic state, all ribbons exhibit hysteresis loops characteristic of a magnetization mechanism involving twin boundary motion. The switching magnetic fields for the onset of Type I twin boundary motion result between 220 mT and 365 mT, values equivalent to twinning stresses of about 1 MPa. It is concluded that both procedures, SR and TR melt spinning, provide microstructures favoring magnetic field induced twin variant reorientation.
dc.description.institutionalaffiliationFil.: Condó, A.M. Comisión Nacional de Energía Atómica. Instituto Balseiro; Argentina; Universidad Nacional de Cuyo; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.institutionalaffiliationFil.: Winkler, E. Comisión Nacional de Energía Atómica. Instituto Balseiro; Argentina; Universidad Nacional de Cuyo; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.institutionalaffiliationFil.: Haberkorn, N. Comisión Nacional de Energía Atómica. Instituto Balseiro; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.institutionalaffiliationexternalFil.: Pozo-López, G. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina; Universidad Nacional de Córdoba; Argentina
dc.description.institutionalaffiliationexternalFil.: Fabietti, L.M. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina; Universidad Nacional de Córdoba; Argentina
dc.description.institutionalaffiliationexternalFil.: Urreta, S.E. Universidad Nacional de Córdoba; Argentina
dc.description.recordsetsectionProducción científica
dc.description.recordsetseriesContribución a revistas científicas
dc.format.extent11 p.
dc.identifier.citationMaterials Characterization. Vol. 124, no. (2017), p. 171-181
dc.identifier.doihttp://dx.doi.org/10.1016/j.matchar.2016.12.020
dc.identifier.issn1044-5803
dc.identifier.issn1873-4189
dc.identifier.urihttps://nuclea.cnea.gob.ar/handle/20.500.12553/5378
dc.language.ISO639-3eng
dc.publisherElsevier
dc.relation.ispartofv. 124
dc.relation.ispartofseriesMaterials Characterization
dc.rights.accesslevelinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.fordCIENCIAS NATURALES
dc.subject.fordCIENCIAS FÍSICAS
dc.subject.inisPROPIEDADES MAGNETICASIIMICROESTRUCTURAIIMICROSCOPIA ELECTRONICA POR TRANSMISION
dc.subject.keywordShape–memory alloysIIMagnetic propertiesIIMartensitic transformationIIRapid solidificationIIMicrostructureIITransmission electron microscopy
dc.titleMicrostructure of as-cast single and twin roller melt-spun Ni2MnGa ribbons
dc.typeARTÍCULO
dc.type.openaireinfo:eu-repo/semantics/article
dc.type.snrdinfo:ar-repo/semantics/artículo
dc.type.versioninfo:eu-repo/semantics/publishedVersion

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
CNEA_BJ_ART_234.pdf
Tamaño:
1.96 MB
Formato:
Adobe Portable Document Format

Colecciones