Publicación: Simulación multi-escala del comportamiento de elementos combustibles en condiciones de irradiación dentro de un reactor nuclear.
Cargando...
Archivos
Fecha
Tipo de recurso
TESIS DE DOCTORADO
Autores
Responsable institucional (informe)
Compilador
Diseñador
Contacto (informe)
Promotor
Productor
Titular
Inventor
Tutor de tesis
Solicitante
Afiliación
Fil: Cazado, Mauricio Exequiel. Comisión Nacional de Energía Atómica. Instituto de Tecnología Sabato, Argentina
Sede CNEA
Fecha de publicación
Fecha de creación
Idioma
spa
Nivel de accesibilidad
Resumen
La Sección Códigos y Modelos, perteneciente a la Gerencia Ciclo del Combustible Nuclear de la Comisión Nacional de Energía Atómica, ha desarrollado íntegramente un código denominado DIONISIO que se compone de un conjunto de modelos destinados a simular el comportamiento de combustibles nucleares bajo irradiación dentro de un reactor de potencia o de investigación, tanto en condiciones de operación normal como de accidente. Siendo el objetivo de DIONISIO la simulación de los fenómenos que ocurren en el in- terior de una barra o placa combustible, esencialmente los relacionados con el material físil y su recubrimiento, el código aproxima la termohidráulica del canal circundante a los combustibles mediante modelos unidimensionales simplicados. Sin embargo, los fenómenos que ocurren en dicho entorno tienen un efecto clave en el desempeño del combustible ya que su función es la de extraer el calor que se genera en su interior. Esto significa que para reproducir de manera realista una barra o placa combustible se vuelve necesario extender los modelos termohidráulicos utilizados en DIONISIO. Para reactores de potencia, en este trabajo se presenta un acople realizado entre DIONISIO y el código SubChanFlow (KIT – Alemania) que cuenta con modelos que describen detalladamente los procesos que ocurren en el fuido y en la interacción fuido- estructura cuando un combustible se somete a irradiación. Este acople presentó mejoras signficativas en el cálculo de la temperatura exterior de la vaina y sus variables relacio- nadas, como espesor de la capa de óxido y captura de hidrógeno por la vaina. En cuanto a los reactores experimentales, se avanzó en la realización de un modelo aplicando el método de elementos finitos que consiste en resolver las ecuaciones de Navier-Stokes para el fuido alrededor de una placa combustible, alcanzando buenos resultados al comparar con problemas de referencia. Además, se presentan nuevos modelos desarrollados en base a la difusión de defectos puntuales en la microestructura para evaluar cambios dimensionales que ocurren tanto en la vaina como en la pastilla combustible cuando son sometidas a irradiación en reactores de potencia. Los modelos consisten en el crecimiento por irradiación para vainas de aleaciones base zirconio y actualizaciones en los modelos de densificación e hinchamiento de pastillas de UO2. Estas actualizaciones de los modelos termofísicos y termohidráulicos permiten realizar simulaciones integrales de una barra combustible obteniéndose buenos resultados cuando se compara con datos experimentales disponibles en la literatura.
The Codes and Models Section ofthe Nuclear Fuel Cycle Management of the National Atomic Energy Commission of Argentina has fully developed a code called DIONISIO, which consists of a set of models designed to simulate the behaviour of nuclear fuel under irradiation inside a power or research reactor, both under normal operation and in accident conditions. Since the aim of DIONISIO is to simulate the phenomena occurring inside a fuel rod or plate, essentially those related to the fissile material and its cladding, the code appro- ximates the thermohydraulics of the channel surrounding the fuels by means of simplifed one-dimensional models. However, the phenomena occurring in such an environment have a decisive infuence on the perormance of the fuel, since its function is to dissipate the heat generated inside it. This means that or a realistic reproduction of a fuel rod or plate, it is necessary to extend the thermohydraulic models used in DIONISIO. For power reactors, this work presents a coupling between DIONISIO and the Sub- ChanFlow code (KIT - Germany), which has models that describe in detail the processes that occur in the fuid and in the fuid-structure interaction when a fuel is irradiated. This coupling has led to significant improvements in the calculation of the external tem- perature of the cladding and related variables, such as oxide layer thickness and hydrogen capture by the cladding. For the experimental reactors, progress has been made in the de- velopment of a finite element model consisting of solution of the Navier-Stokes equations for the fuid around a fuel plate, achieving good results when compared with reference problems. In addition, new models developed based on the diffusion of point deffects in the mi- crostructure are presented to evaluate the dimensional changes that occur in both the sheath and the fuel pellet when they are subjected to irradiation in power reactors. The models consist of irradiation growth for zirconium-based alloy cladding and updates to the densification and swelling models for UO2 pellets. These updates to the thermophysical and thermohydraulic models allow for comprehensive simulations of a fuel rod with good results when compared to experimental data available in the literature.
The Codes and Models Section ofthe Nuclear Fuel Cycle Management of the National Atomic Energy Commission of Argentina has fully developed a code called DIONISIO, which consists of a set of models designed to simulate the behaviour of nuclear fuel under irradiation inside a power or research reactor, both under normal operation and in accident conditions. Since the aim of DIONISIO is to simulate the phenomena occurring inside a fuel rod or plate, essentially those related to the fissile material and its cladding, the code appro- ximates the thermohydraulics of the channel surrounding the fuels by means of simplifed one-dimensional models. However, the phenomena occurring in such an environment have a decisive infuence on the perormance of the fuel, since its function is to dissipate the heat generated inside it. This means that or a realistic reproduction of a fuel rod or plate, it is necessary to extend the thermohydraulic models used in DIONISIO. For power reactors, this work presents a coupling between DIONISIO and the Sub- ChanFlow code (KIT - Germany), which has models that describe in detail the processes that occur in the fuid and in the fuid-structure interaction when a fuel is irradiated. This coupling has led to significant improvements in the calculation of the external tem- perature of the cladding and related variables, such as oxide layer thickness and hydrogen capture by the cladding. For the experimental reactors, progress has been made in the de- velopment of a finite element model consisting of solution of the Navier-Stokes equations for the fuid around a fuel plate, achieving good results when compared with reference problems. In addition, new models developed based on the diffusion of point deffects in the mi- crostructure are presented to evaluate the dimensional changes that occur in both the sheath and the fuel pellet when they are subjected to irradiation in power reactors. The models consist of irradiation growth for zirconium-based alloy cladding and updates to the densification and swelling models for UO2 pellets. These updates to the thermophysical and thermohydraulic models allow for comprehensive simulations of a fuel rod with good results when compared to experimental data available in the literature.