Publicación: Gradual pressure-induced enhancement of magnon excitations in CeCoSi
Cargando...
Archivos
Fecha
Tipo de recurso
ARTÍCULO CIENTÍFICO
Responsable institucional (informe)
Compilador
Diseñador
Contacto (informe)
Promotor
Titular
Inventor
Tutor de tesis
Solicitante
Afiliación
Fil.: Franco, D.G. Comisión Nacional de Energía Atómica. Instituto Balseiro; Argentina; Universidad Nacional de Cuyo; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina; Max Planck Institute for Chemical Physics of Solids; Alemania
Fil.: Nikitin, S.E. Max Planck Institute for Chemical Physics of Solids; Alemania; Technische Universität Dresden; Alemania
Fil.: Kwon, J. Max Planck Institute for Chemical Physics of Solids; Alemania
Fil.: Bewley, R. STFC Rutherford Appleton Laboratory; Reino Unido
Fil.: Podlesnyak, A. Oak Ridge National Laboratory; Estados Unidos
Fil.: Hoser, A. Helmholtz-Zentrum Berlin für Materialien und Energie; Alemania
Fil.: Koza, M.M. Institut Laue-Langevin; Francia
Fil.: Geibel, C. Max Planck Institute for Chemical Physics of Solids; Alemania
Fil.: Stockert, O. Max Planck Institute for Chemical Physics of Solids; Alemania
Sede CNEA
Centro Atómico Bariloche
Fecha de publicación
Fecha de creación
Idioma
eng
Nivel de accesibilidad
Resumen
CeCoSi is an intermetallic antiferromagnet with a very unusual temperature-pressure phase diagram: at ambient pressure it orders below TN=8.8K, while application of hydrostatic pressure induces a new magnetically ordered phase with exceptionally high transition temperature of ∼40K at 1.5 GPa. We studied the magnetic properties and the pressure-induced magnetic phase of CeCoSi by means of elastic and inelastic neutron scattering (INS) and heat capacity measurements. At ambient pressure CeCoSi orders into a simple commensurate AFM structure with a reduced ordered moment of only mCe=0.37(6)μB. Specific heat and low-energy INS indicate a significant gap in the low-energy magnon excitation spectrum in the antiferromagnetic phase, with the CEF excitations located above 10 meV. Hydrostatic pressure gradually shifts the energy of the magnon band towards higher energies and the temperature dependence of the magnons measured at 1.5 GPa is consistent with the phase diagram. Moreover, the CEF excitations are also drastically modified under pressure.
Descripción
Palabras clave
Citación
Physical Review B. Vol. 101, no. (2020), p. 214426