Publicación:
Orientational pinning and transverse voltage: Simulations and experiments in square Josephson junction arrays

Cargando...
Miniatura

Tipo de recurso

ARTÍCULO CIENTÍFICO

Responsable institucional (informe)

Compilador

Diseñador

Contacto (informe)

Promotor

Titular

Inventor

Tutor de tesis

Solicitante

Afiliación

Fil: Marconi, V. I. Comisión Nacional de Energía Atómica. Instituto Balseiro; Argentina
Fil: Martinoli, P. Université de Neuchâtel; Suiza
Fil: Candia, S. Comisión Nacional de Energía Atómica. Instituto Balseiro; Argentina
Fil: Balenzuela, P. Comisión Nacional de Energía Atómica. Instituto Balseiro; Argentina
Fil: Pastoriza, H. Comisión Nacional de Energía Atómica. Instituto Balseiro; Argentina
Fil: Domínguez, D. Comisión Nacional de Energía Atómica. Instituto Balseiro; Argentina

Sede CNEA

Centro Atómico Bariloche

Fecha de publicación

Fecha de creación

Idioma

eng

Nivel de accesibilidad

Proyectos de investigación

Unidades organizativas

Número de la revista

Resumen

We study the dependence of the transport properties of square Josephson Junction arrays with the direction of the applied dc current, both experimentally and numerically. We present computational simulations of current–voltage curves at finite temperatures for a single vortex in an array of L×L junctions (Ha2/Φ0=f=1/L2), and experimental measurements in 100×1000 arrays under a low magnetic field corresponding to f≈0.02. We find that the transverse voltage vanishes only in the directions of maximum symmetry of the square lattice: the [10] and [01] direction (parallel bias) and the [11] direction (diagonal bias). For orientations different from the symmetry directions, we find a finite transverse voltage that depends strongly on the angle φ of the current. We find that vortex motion is pinned in the [10] direction (φ=0), meaning that the voltage response is insensitive to small changes in the orientation of the current near φ=0. We call this phenomenon orientational pinning. This leads to a finite transverse critical current for a bias at φ=0 and to a transverse voltage for a bias at φ≠0. On the other hand, for diagonal bias in the [11] direction the behavior is highly unstable against small variations of φ, leading to a rapid change from zero transverse voltage to a large transverse voltage within a few degrees. This last behavior is in good agreement with our measurements in arrays with a quasidiagonal current drive.

Descripción

Palabras clave

Citación

Physical Review B. Vol. 62, no. 6 (2000), p. 4096-4104

Colecciones