Optimización de la síntesis por aerosol de materiales mesoporosos de ZrO2 para potenciales usos como adsorbentes de iones lantánidos
Cargando...
Archivos
Fecha
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Comisión Nacional de Energía Atómica. Instituto de Tecnología Sabato
Resumen
En este trabajo, se llevó a cabo la síntesis y caracterización de materiales porosos basados en óxido de circonio (ZrO2) utilizando el surfactante Pluronic® F127 como
agente porogénico y diferentes agentes expansores de poro, como iso-propanol, n-hexanol,
polipropilenglicol (PEG) y una combinación de iso-propanol y β-naftol. El objetivo principal fue incorporar agentes expansores de poro en función de obtener poros altamente
organizados con un estricto control de tamaño, forma e interconexión. De manera de obtener materiales con ´áreas especificas y tamaños de poro mayores a los obtenidos hasta el
momento.
Se realizaron diversos análisis para caracterizar las muestras, incluyendo difracción
de rayos X (DRX), espectroscopia infrarroja por transformada de Fourier (FTIR), termogravimetría (TGA), análisis de sorción de nitrógeno, microscopía electrónica de transmisión (TEM) y microscopía electrónica de barrido (SEM). Estas técnicas proporcionaron
información complementaria y permitieron una comprensión acabada de los materiales
sintetizados.
Los difractogramas obtenidos por DRX revelaron patrones característicos de difracción que confirmaron la formación y consolidación de la estructura cristalina del ´oxido
en las muestras calcinadas. Además, se observaron patrones consistentes en los espectros FTIR, lo que indica una buena similitud de los productos finales en cada muestra
analizada.
Los perfiles de TGA proporcionaron información sobre la eliminación del surfactante
Pluronic® F127, y los diversos agentes expansores de poro estudiados, durante el proceso
de calcinación, así como las perdidas de peso asociadas con la evaporación del agua. La
eficacia del tratamiento térmico en la eliminación del surfactante se confirmó mediante la
comparación de los espectros infrarrojos de las muestras antes y después de la calcinación,
teniendo en cuenta el espectro del agente porógeno.
El análisis de sorción de nitrógeno reveló la presencia de mesoporos en las muestras
calcinadas, con distintas distribuciones de tamaño de poro y superficies específicas. Se
obtuvieron valores de superficie específica en el rango de 76 a 108 m2/g, dependiendo de
los agentes expansores de poro utilizados.
Las micrografías de TEM proporcionaron una confirmación visual de la presencia de
poros en las muestras calcinadas. Por otro lado, por SEM se pudo apreciar una variabilidad
significativa en la forma de las partículas, lo que indica que la incorporación de agentes
expansores de poro influye en el proceso de formación del material.
En resumen, la incorporación de diferentes agentes expansores de poro en la síntesis
de materiales porosos a base de ZrO2 tuvo un impacto significativo en sus propiedades
estructurales y morfológicas.
In this work, synthesis and characterization of porous materials materials based on zirconium oxide (ZrO2) were carried out. The surfactant Pluronic® F127 was using as a pore-generating agent, while various pore-expanding agents: isopropanol, n-hexanol, polypropylene glycol (PEG), and a combination of isopropanol and β-naphthol, were utilized. The main objective was to incorporate pore-expanding agents to achieve highly organized pores with strict control over size, shape, and interconnectivity, resulting in materials with larger specific surface areas and pore sizes than previously obtained Various characterization techniques were employed, such as: X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), ni trogen sorption analysis, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). These techniques provided complementary information and allowed for a comprehensive understanding of the synthesized materials. The diffractograms obtained by X-ray diffraction confirm the formation and conso lidation of the crystalline structure of the oxide in the calcined samples. Infrared spectra obtained are in concordance with zirconium dioxide in all samples analyzed. By TGA, it was possible to determine the temperature ranges at which the surfactant Pluronic® F127 and pore-expanding agents were thermally degraded and removed from the materials during the calcination process. The effectiveness of the thermal treatment in removing the surfactant was confirmed by comparing the infrared spectra of the samples before and after calcination. Nitrogen sorption analysis revealed the presence of mesopores in the calcined sam ples, with different pore size distributions and specific surface areas. Specific surface area values ranging from 76 to 108 m2/g were obtained, depending on the pore-expanding agents used. TEM micrographs provided visual confirmation of the presence of pores in the cal cined samples. Additionally, SEM revealed significant variability in particle shape, indi cating that the incorporation of pore-expanding agents influences the material formation process. In summary, the incorporation of different pore-expanding agents in the synthe sis of porous materials based on ZrO2 had a significant impact on their structural and morphological properties.
In this work, synthesis and characterization of porous materials materials based on zirconium oxide (ZrO2) were carried out. The surfactant Pluronic® F127 was using as a pore-generating agent, while various pore-expanding agents: isopropanol, n-hexanol, polypropylene glycol (PEG), and a combination of isopropanol and β-naphthol, were utilized. The main objective was to incorporate pore-expanding agents to achieve highly organized pores with strict control over size, shape, and interconnectivity, resulting in materials with larger specific surface areas and pore sizes than previously obtained Various characterization techniques were employed, such as: X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), ni trogen sorption analysis, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). These techniques provided complementary information and allowed for a comprehensive understanding of the synthesized materials. The diffractograms obtained by X-ray diffraction confirm the formation and conso lidation of the crystalline structure of the oxide in the calcined samples. Infrared spectra obtained are in concordance with zirconium dioxide in all samples analyzed. By TGA, it was possible to determine the temperature ranges at which the surfactant Pluronic® F127 and pore-expanding agents were thermally degraded and removed from the materials during the calcination process. The effectiveness of the thermal treatment in removing the surfactant was confirmed by comparing the infrared spectra of the samples before and after calcination. Nitrogen sorption analysis revealed the presence of mesopores in the calcined sam ples, with different pore size distributions and specific surface areas. Specific surface area values ranging from 76 to 108 m2/g were obtained, depending on the pore-expanding agents used. TEM micrographs provided visual confirmation of the presence of pores in the cal cined samples. Additionally, SEM revealed significant variability in particle shape, indi cating that the incorporation of pore-expanding agents influences the material formation process. In summary, the incorporation of different pore-expanding agents in the synthe sis of porous materials based on ZrO2 had a significant impact on their structural and morphological properties.