Publicación: Desarrollo de álabes en aerogeneradores de eje horizontal de baja potencia, emplenado materiales compuestos
Development of blades in low-power horizontal axis wind turbines, using composite materials
Cargando...
Fecha
Tipo de recurso
TESIS DE MAESTRÍA
Autores
Responsable institucional (informe)
Compilador
Diseñador
Contacto (informe)
Promotor
Titular
Inventor
Tutor de tesis
Solicitante
Afiliación
Fil: Ganiele, María Julieta. Comisión Nacional de Energía Atómica. Instituto Sabato; Argentina
Sede CNEA
Centro Atómico Constituyentes
Fecha de publicación
Fecha de creación
2022
Idioma
spa
Nivel de accesibilidad
Resumen
La energía eólica es una fuente de energía renovable, no contaminante, es inagotable, y reduce el uso de combustibles fósiles, origen de las emisiones de efecto invernadero que causan el calentamiento global. Generalmente está asociada con numerosos y grandes aerogeneradores que se encuentran formando parques eólicos. Sin embargo, actualmente la energía eólica de pequeña y mediana escala ofrece una alternativa frente a los aerogeneradores de gran potencia, desarrollando un papel importante para suplir consumos en forma local. En este contexto, el objetivo de este trabajo ha sido establecer una sistematización acerca del diseño y construcción de un álabe de material compuesto para un aerogenerador de eje horizontal de baja potencia. Para ello se seleccionó un perfil aerodinámico, se diseñó el álabe y optimizó su geometría, se evaluó el desempeño del rotor y del aerogenerador establecido por el álabe mediante el uso de la teoría BEM y una primera aproximación al análisis estructural. A su vez, se ha realizado la fabricación del álabe con materiales compuestos (GFRP), utilizando técnicas de impresión 3D para la obtención del contramolde y laminación manual con compactación por vacío para la obtención del molde y el álabe, y se caracterizó mecánica y térmicamente el laminado empleado para la fabricación.
Wind energy is a renewable, non-polluting energy source, it is inexhaustible, and it reduces the use of fossil fuels, the source of greenhouse emissions that cause global warming. It is generally associated with numerous large wind turbines that are found forming wind farms. However, currently small and medium-scale wind energy offers an alternative to high-power wind turbines, playing an important role in supplying consumption locally. In this context, the objective of this work has been to establish a systematization about the design and construction of a composite material blade for a low-power horizontal axis wind turbine. For this, an aerodynamic profile was selected, the blade was designed and its geometry optimized, the performance of the rotor and the wind turbine established by the blade was evaluated through the use of BEM theory and a first approach to structural analysis. In turn, the blade was manufactured with composite materials (GFRP), using 3D printing techniques to obtain the countermold and manual lamination with vacuum compaction to obtain the mold and the blade, and it was characterized mechanically and thermally. the laminate used for manufacturing.
Wind energy is a renewable, non-polluting energy source, it is inexhaustible, and it reduces the use of fossil fuels, the source of greenhouse emissions that cause global warming. It is generally associated with numerous large wind turbines that are found forming wind farms. However, currently small and medium-scale wind energy offers an alternative to high-power wind turbines, playing an important role in supplying consumption locally. In this context, the objective of this work has been to establish a systematization about the design and construction of a composite material blade for a low-power horizontal axis wind turbine. For this, an aerodynamic profile was selected, the blade was designed and its geometry optimized, the performance of the rotor and the wind turbine established by the blade was evaluated through the use of BEM theory and a first approach to structural analysis. In turn, the blade was manufactured with composite materials (GFRP), using 3D printing techniques to obtain the countermold and manual lamination with vacuum compaction to obtain the mold and the blade, and it was characterized mechanically and thermally. the laminate used for manufacturing.