Publicación: Flux-lattice melting, anisotropy, and the role of interlayer coupling in Bi-Sr-Ca-Cu-O single crystals
Cargando...
Archivos
Fecha
Tipo de recurso
ARTÍCULO CIENTÍFICO
Responsable institucional (informe)
Compilador
Diseñador
Contacto (informe)
Promotor
Titular
Inventor
Tutor de tesis
Solicitante
Afiliación
Fil.: Duran, C. Comisión Nacional de Energía Atómica. Instituto Balseiro; Argentina; Universidad Nacional de Cuyo; Argentina
Fil.: Bishop, D. J. AT&T Bell Laboratories; Estados Unidos
Fil.: Yazyi, J. Comisión Nacional de Energía Atómica. Instituto Balseiro; Argentina; Universidad Nacional de Cuyo; Argentina
Fil.: Mitzi, D.B. Stanford University; Estados Unidos
Fil.: de la Cruz, F. Comisión Nacional de Energía Atómica. Instituto Balseiro; Argentina; Universidad Nacional de Cuyo; Argentina
Fil.: Kapitulnik, A. Stanford University; Estados Unidos
Sede CNEA
Centro Atómico Bariloche
Fecha de publicación
Fecha de creación
Idioma
eng
Nivel de accesibilidad
Resumen
We have used the high-Q mechanical-oscillator technique to probe the vortex-lattice structure in high-quality Bi-Sr-Ca-Cu-O single crystals over a wide range of magnetic fields (200 Oe to 40 kOe), and relative orientations θ between the magnetic field and the crystalline c^ axis. In addition to the large softening and dissipation peak previously observed and interpreted as due to flux-lattice melting, another distinctly different peak at higher temperatures is seen. The temperatures where the dissipation peaks take place are solely defined by the parallel component of the field cosθ, while the restoring force on the oscillator is due to both field components. We suggest that the two peaks are due to the softening of interplanar coupling at the low-temperature peak, and melting or depinning of the two-dimensional pancake vortices at the higher-temperature peak.
Descripción
Palabras clave
Citación
Physical Review B. Vol. 44, no. 14 (1991), p. 7737-7740