Logotipo del repositorio

Hierarchy of Floquet gaps and edge states for driven honeycomb lattices

cnea.tipodocumentoARTÍCULO CIENTÍFICO
dc.contributor.authorPérez Piskunow, Pablo Matías
dc.contributor.authorFoa Torres, Luis Eduardo Francisco
dc.contributor.authorUsaj, Gonzalo
dc.date.accessioned2025-12-11T23:28:43Z
dc.date.available2025-12-11T23:28:43Z
dc.date.issued2015-04-20
dc.description.abstractElectromagnetic driving in a honeycomb lattice can induce gaps and topological edge states with a structure of increasing complexity as the frequency of the driving lowers. While the high frequency case is the most simple to analyze we focus on the multiple photon processes allowed in the low frequency regime to unveil the hierarchy of Floquet edge-states. In the case of low intensities an analytical approach allows us to derive effective Hamiltonians and address the topological character of each gap in a constructive manner. At high intensities we obtain the net number of edge states, given by the winding number, with a numerical calculation of the Chern numbers of each Floquet band. Using these methods, we find a hierarchy that resembles that of a Russian nesting doll. This hierarchy classifies the gaps and the associated edge states in different orders according to the electron-photon coupling strength. For large driving intensities, we rely on the numerical calculation of the winding number, illustrated in a map of topological phase transitions. The hierarchy unveiled with the low energy effective Hamiltonians, alongside with the map of topological phase transitions discloses the complexity of the Floquet band structure in the low frequency regime. The proposed method for obtaining the effective Hamiltonian can be easily adapted to other Dirac Hamiltonians of two dimensional materials and even the surface of a 3D topological insulator.
dc.description.institutionalaffiliationFil: Pérez Piskunow, Pablo Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
dc.description.institutionalaffiliationFil: Foa Torres, Luis Eduardo Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
dc.description.institutionalaffiliationFil: Usaj, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
dc.identifier.issn1050-2947
dc.identifier.urihttps://nuclea.cnea.gob.ar/handle/20.500.12553/8367
dc.publisherAmerican Physical Society
dc.relationinfo:eu-repo/semantics/reference/hdl/11336/44226
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevA.91.043625
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.91.043625
dc.rights.licenseinfo:eu-repo/semantics/openAccess
dc.rights.licensehttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subjectDriven Quantum Systems
dc.subjectFloquet Topological Insulators
dc.subjectGraphene
dc.subjectAstronomía
dc.subjectCiencias Físicas
dc.subjectCIENCIAS NATURALES Y EXACTAS
dc.titleHierarchy of Floquet gaps and edge states for driven honeycomb lattices
dc.typeARTÍCULO
dc.type.versionVersión publicada

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
file_976_0.pdf
Tamaño:
1.01 MB
Formato:
Adobe Portable Document Format