Publicación: Phase separation and suppression of critical dynamics at quantum phase transitions of MnSi and (Sr1-xCax)RuO3
Cargando...
Archivos
Fecha
Tipo de recurso
ARTÍCULO CIENTÍFICO
Responsable institucional (informe)
Compilador
Diseñador
Contacto (informe)
Promotor
Titular
Inventor
Tutor de tesis
Solicitante
Afiliación
Fil: Sereni, J. Comisión Nacional de Energía Atómica. Laboratorio de Bajas Temperaturas; Argentina
Fil: Uemura, Y.J., Columbia University; Estados Unidos
Fil: Goko, T. Columbia University; Estados Unidos; Tokyo University of Science; Japón
Fil: Gat-Malureanu, I. M. Columbia University; Estados Unidos; SUNY Maritime College; Estados Unidos
Fil: Carlo, J. P. Columbia University; Estados Unidos
Fil: Russo, P. L. Columbia University; Estados Unidos
Fil: Savici, A. T. Columbia University; Estados Unidos;
Fil: Aczel, A. McMaster University; Canadá
Fil: MacDougall, G. J. McMaster University; Canadá
Fil: Rodriguez, J. A. McMaster University; Canadá
Sede CNEA
Centro Atómico Bariloche
Fecha de publicación
Fecha de creación
Idioma
eng
Nivel de accesibilidad
Resumen
Quantum phase transitions (QPTs) at zero temperature are generally studied by means of pressure or composition tuning. Volume-integrated probes such as neutron and magnetization measurements, as well as pressure uncertainties in NMR studies using powder specimens, however, have limited the characterization of magnetism and detection of discontinuous changes at QPTs. Overcoming these limitations, we carried out muon spin relaxation measurements that have a unique sensitivity to volume fractions of magnetically ordered and paramagnetic regions, and studied QPTs from itinerant helimagnet or ferromagnet to paramagnet transitions in MnSi (single crystal; varying pressure) and (Sr1−xCax)RuO3 (ceramic specimens; varying x). Our results provide the first clear evidence that both cases are associated with phase separation and suppression of dynamic critical behaviour, reveal slow dynamics of the ‘partial order’ diffuse spin correlations in MnSi above the critical pressure and suggest the possibility that a majority of QPTs in correlated electron systems involve first-order transitions and/or phase separation.
Descripción
Palabras clave
Citación
Uemura, Y., Goko, T., Gat-Malureanu, I. et al. Phase separation and suppression of critical dynamics at quantum phase transitions of MnSi and (Sr1−xCax)RuO3. Nature Phys 3, 29–35 (2007). https://doi.org/10.1038/nphys488