Examinando por Autor "Herrera Martinez, Walter Oswaldo"
Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
Ítem Acceso Abierto Fabricación y estudio de celdas solares de perovskitas(Comisión Nacional de Energía Atómica. Gerencia de Área Académica. Gerencia Instituto de Tecnología "Jorge Sabato") Herrera Martinez, Walter Oswaldo; Pérez, Dolores; Comisión Nacional de Energía Atómica. Gerencia de Área Académica. Gerencia Instituto de Tecnología "Jorge Sabato"Desde hace ya varios años, la energía solar se ha convertido en una alternativa muy atractiva para la generación de electricidad gracias a su sustentabilidad y su carácter renovable. Las celdas solares son dispositivos que nos permiten convertir la luz solar directamente en electricidad. Con el tiempo este tipo de tecnología ha ido cambiando, siendo de relevancia para su desarrollo gran cantidad de nuevos materiales diferentes a los semiconductores clásicos como el silicio, el germanio o el Arseniuro de Galio, hoy en día se ha avanzado en el estudio y desarrollo de este tipo de dispositivos en base a polímeros y perovskitas orgánicas que destacan por su alta eficiencia y bajo costo de fabricación. En este trabajo se explica como a partir de la deposición de películas delgadas, se fabricaron películas de perovskita de alta calidad cristalina, con las que posteriormente se desarrollaron celdas solares en condiciones ambientales, sin el uso de una caja de guantes, logrado alcanzar eficiencias de hasta el 14%. Para poder lograr dicha eficiencia, primeramente, se realizó una búsqueda exhaustiva de bibliografía, para entender cómo se comportan físicamente los materiales semiconductores, ya que estos son los encargados de realizar todo el proceso de foto conversión. Las celdas solares, básicamente se basan en una juntura PN, que es la unión de dos semiconductores con diferente tipo de dopaje, es decir que cada uno de ellos puede transportar diferentes tipos de carga debido a modificaciones en su estructura cristalina. Además de lo mencionado anteriormente, se estudió como influye sobre la eficiencia de dichos dispositivos el espectro solar que llega hasta la superficie. Una de las ventajas de la fabricación de celdas basadas en materiales de carácter orgánico, es que su síntesis no requiere de equipos complejos y que además los procesos pueden ser escalados posteriormente. Cada una de las capas que conforma la celda debió ser estudiada mediante diferentes técnicas de caracterización, como Microscopia electrónica de barrido, con la que se logró estudiar las propiedades estructurales de las muestras y se determinó los espesores adecuados de cada una de las capas para obtener celdas eficientes, la difracción de rayos X, permitió identificar que las muestras poseían alta cristalinidad y la fase adecuada. Cuando se fabricaban las celdas era necesario estudiar sus características eléctricas mediante curvas de corriente voltaje, de esta forma se pudo identificar que materiales se podían usar como capa transportadora de huecos y también otros factores importantes como la densidad de corriente de cortocircuito que en promedio estaba por encima de los 16 mA/cm2, el voltaje de corto circuito de aproximadamente 1.0 Voltio y Factor de llenado superior al 73%. También se estudió la cantidad de fotones convertidos en electricidad mediante mediciones de eficiencia cuántica externa, en las cuales se observó que las celdas en algunas ocasiones presentaban problemas de absorción en determinado rango de valores. Mediante la técnica rejilla móvil se logró determinar que los portadores de carga de las películas de perovskita tenían movilidades de aproximadamente del orden de 1 × 10-3 cm2V -1 s-1 para electrones y 1x10-2 cm2V -1 s -1 para huecos, que son valores acordes a los reportados en la literatura. Otra parte de este estudio se basó en el análisis de daño por radiación, todo ello mediante el uso del acelerador Tandar, que es un acelerador de iones pesado perteneciente al Centro Atómico Constituyentes y que fue inaugurado en el año 1985. Se estudiaron películas irradiadas con partículas alfa de energía de 2 MeV, 5 MeV y 10 MeV, que sería el tipo de radiación que recibiría una muestra en una órbita baja, todo esto con el fin de analizar la viabilidad del uso de dichas celdas para aplicaciones espaciales. Mediante la técnica de espectroscopia Raman se notó la formación de óxidos de plomo debido a la superficie irradiada altamente reactiva y su interacción con el oxígeno atmosférico, también se aprecio que cuando las muestras irradiadas estaban recubiertas con PMMA (un polímero termoplástico), el espectro no mostraba los picos correspondientes a dichos óxidos. Basados en el análisis con la espectroscopia Raman, se realizaron en simulaciones con el software wxAMPS para determinar qué tipo de defectos se formaban en las muestras, y se usó el software SRIM/TRIM que permite calcular las interacciones entre iones y la materia. Todo lo anterior, con el propósito de estudiar los efectos de radiación en celdas solares de perovskita, para ello se usó una de las líneas del acelerador Tandar, la cual pertenece al departamento Energía Solar de la Comisión Nacional de Energía Atómica CNEA, dicha línea cuenta con una recamara especial para desarrollar diferentes estudios de daño por radiación. Se lograron realizar curvas de corriente voltaje in-situ, mientras se irradiaban las muestras con protones de 10 MeV y dichas mediciones mostraron la gran estabilidad de las celdas frente a dicho tipo de radiación, ya que no se observaron cambios relevantes en la Jsc ni en el Voc.